

AFRL Game Changing Technology: The Self-Protect High Energy Laser

26 June 2017

100 YEARS OF U.S. AIR FORCE SCIENCE & TECHNOLOGY

AFRL HERITAGE | 1917-2017

Dr. Rich Bagnell SHiELD ATD Program Manager Directed Energy Directorate Air Force Research Laboratory

America's Air Force: A Call To The Future

Strategic Vectors for the Future

- Provide effective 21st century deterrence
- Maintain robust and flexible Global Integrated ISR
- Ensure full-spectrum capable, high-end focused force
- Pursue a multi-domain approach to our Five Core Missions
- Continue pursuit of Game-Changing technologies
 - Hypersonics
 - Nanotechnology
 - Directed Energy
 - Unmanned Systems
 - Autonomous Systems

Mission: Lead the discovery, development and delivery of directed energy science and technology for National Security

Core Technical Competencies

High Power Electromagnetics

- Electromagnetics
- Non-lethal counter-electronics technology (disrupt critical electronic systems)
- Advanced pulsed power sources
- High power electromagnetic effects and predictive modeling

Laser Systems

- Future offensive and defensive laser concepts
- Advanced Beam Control
- Gas, solid state, and fiber laser sources
- Laser effects and predictive modeling

Directed Energy and Electro-Optics for Space Superiority

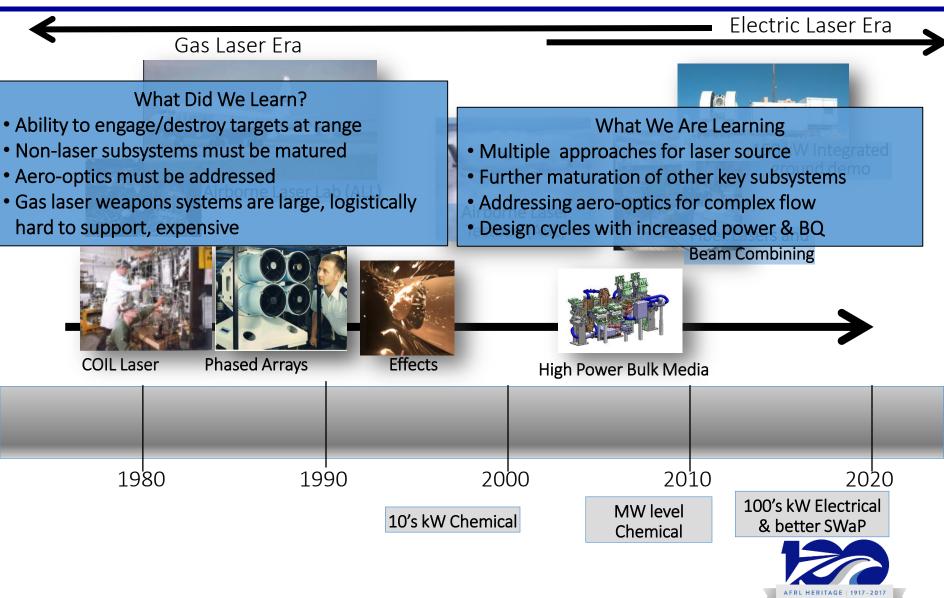
- Space Situational Awareness
- Track and image space objects from ground-based telescopes
- Adaptive optic technologies to compensate for atmospheric distortions

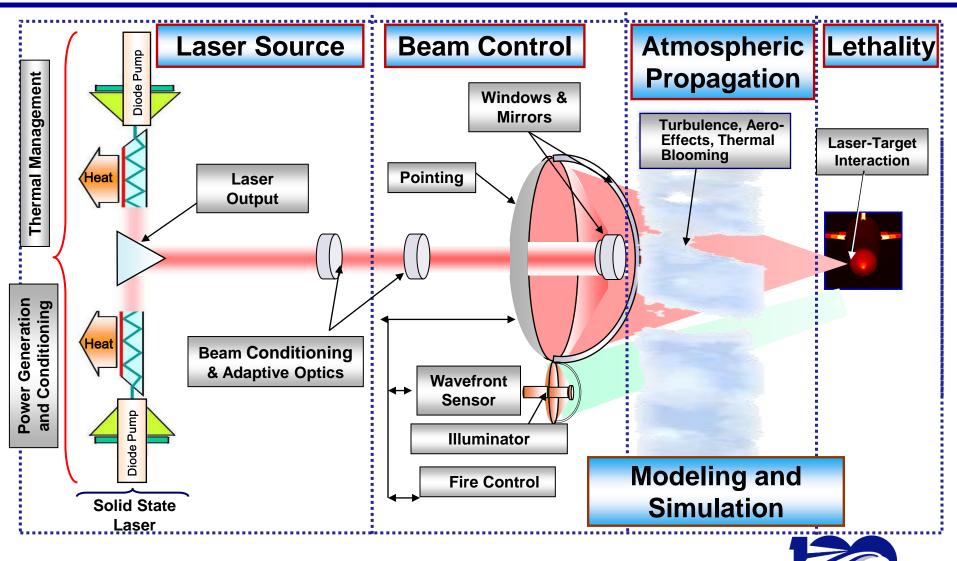
Weapons Modeling and Simulation

- Concept analysis
- Model synergy of directed energy and kinetic weapons at mission level
- Computer modeling saves time, lowers costs, and provides warfighter with predictive capabilities

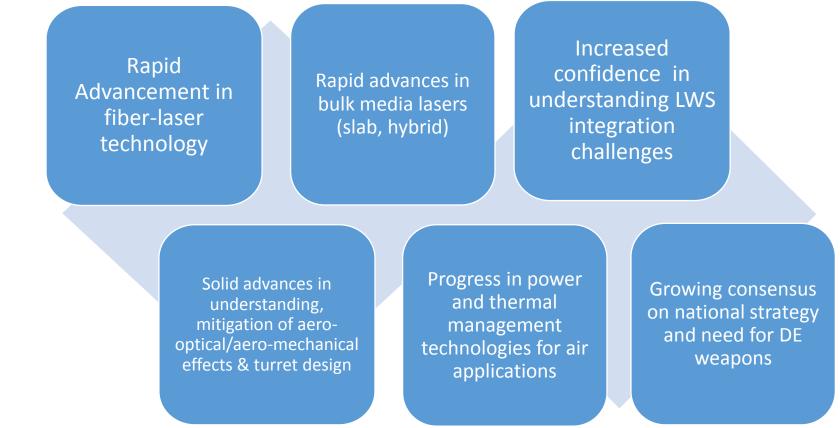
Vision: Speed of Light to the Fight by 2020

Distribution A: Approved for Public Release


AFRL/Directed Energy Directorate Technology Heritage



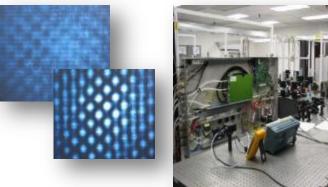
Laser Weapon System Overview



Laser Technical Strategy Drivers

Multiple Laser Technology Advances Support a Wide Range of Applications

Enabling Technologies: Lasers System Technologies



GAS LASERS

ACQUISITION, TRACKING, POINTING POWER AND THERMAL

SOLID STATE LASERS

FIBER LASERS

LASER SYSTEM INTEGRATION

Distribution A: Approved for Public Release

Enabling Technologies: Aero-optic/Aero-adaptive Beam Control (ABC)

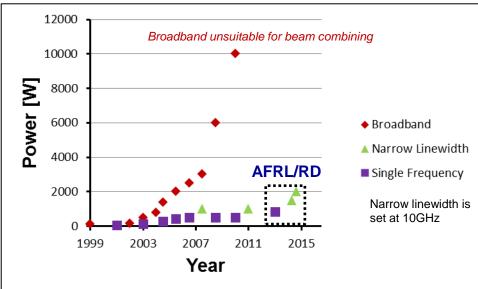


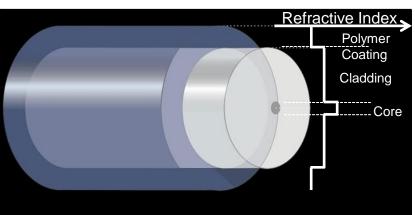
Program Goals and Objectives

 Develop an aero-optic/aero-adaptive beam control (ABC) capability to increase lethality of airborne High Energy Laser (HEL) systems in the aft field of regard

Technical Approach

- Optimize flow control strategies for pointing angles through wake turbulence
- Explore the ability of the flow control system to complement adaptive optics Military Utility
 - Order of magnitude improvement in fluence in the aft field of regard enables efficient integration onto tactical platforms for self defense


Enabling Technologies: Fiber Laser Advantages & Challenges

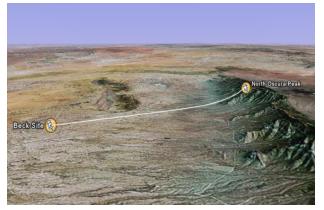


Fiber laser systems offer advantages over other solid-state devices

- Compact; Small size/low weight (SWaP favorable)
- Simple architecture (monolithic)
 - Reduction in free space optics
- High efficiency
 - ~35-40% wall plug efficiency, Yb-doped fibers
 - ~90% optical-to-optical efficiency
- Diffraction limited beam quality
- Excellent thermal management
- Spectral or coherent combining for power scaling

Yb-Doped Fiber Laser Power Scaling Trends

Challenges to scaling linewidth fiber laser amplifiers to high power: Stimulated Brillouin Scattering and Modal Instabilities


Distribution A: Approved for Public Release

Double Clad Fiber

Enabling Technologies: HELLADS Demonstrator Laser Weapon System (DLWS)

Demo configuration for missile engagement

Integrated System

Program

- Joint AF/DARPA program
- First demo of fully integrated, 150kW class solid state laser (SSL) weapon system
- Significant breakthroughs in SSL power and beam quality
- Laser delivery late summer 2015
- Integrated high power tests complete
- Will be used for early SHiELD concept proofs

Status & Impact

- Field lethality data, M&S tool, and integration lessons learned
- Speed of light action can engage extremely fast targets
- Laser precision enables targeting swarms
- Safety protocols ensure safe laser operations in field

Existence Proof for 150kW Class Electric Laser Weapon

Distribution A: Approved for Public Release Distribution A: Approved for Public Release

Enabling Technologies: Weapons Modeling & Simulation

DE and DE/Kinetic Energy Concept and Mission Effectiveness Analysis

Systems and Missions Modeling and Simulation

Distribution A: Approved for Public Release

Self-Protect High Energy Laser Demonstrator (SHiELD) Advanced Technology Demonstration (ATD)

Description

- SHiELD was commissioned by the Air Combat Command Applied Technology Council as an Advanced Technology Demonstration (ATD)
- SHiELD is an effort to integrate a high energy laser system onto a tactical aircraft to demonstrate self-protection from threats

Purpose

- Retire Science and Technology risks associated with integrating high energy lasers on fighter aircraft
- Demonstrate maturity of integrated laser systems in a complex flight environment

Approach

- 2-Phased approach
- Phase 1: Low power system demonstrating aeroeffects mitigation
 - Aircraft and laser system compatibility and concept of employment
 - Acquisition, tracking, and pointing performance on threats
 - Characterization of aero-effects to develop concepts to expand operational envelop
 - Improved performance through aero-effects mitigation
- Phase 2: High power system demonstrating performance in flight against threats
 - Aircraft & high power laser system compatibility & concept of employment
 - Provides initial data for reliability, maintainability, availability
 - · Anchors system models with flight data
 - Informs follow-on science and technology investments

- STRAFE (<u>SHiELD</u> <u>Turret</u> <u>Research</u> in <u>Aero-effects</u>)
 - Awarded 16 Aug 2016: Northrop Grumman Corporation
 - Beam Control subsystem which acquires the target, tracks it and delivers the laser output beam to the target aimpoint
- LPRD (Laser Pod Research and Development)
 - Awarded 14 Dec 2016: Boeing Corporation
 - Integrated aero-dynamic pod—contains the separately developed laser and beam control subsystems, and supplies them with power, cooling and overall system control
- LANCE <u>(Laser Advancements for Next-Generation Compact Environments</u>)
 - In evaluation
 - High Energy Laser subsystem

AF Roadmap: Laser Weapons

Notional concept on 6th gen aircraft

- Defeat aircraft beyond visual range
- Defeat hard targets in flight at range
- Hard ground target defeat

Key Laser System S&T Disciplines

- Target effects
- Acquisition, Tracking, and Pointing
- **Beam Control & Aero-effects**
- Laser sources
- Power & thermal management
- Numerical design & analysis

2018-2021

Notional concept on 4th and 5th gen aircraft

- Aircraft self-defense: defeat moderate salvo of SAMs
- A-A missions: Defeat threats at moderate range
- A-G Missions: Ultra-precise weapon against moderately hard targets

A-A Missions: Defeat incoming threats

Entry level capability for self defense

2025

2029+

Distribution A: Approved for Public Release

Reducing SWaP and Increasing Capability for A2/AD Environment