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3.1 INTRODUCTION

Recent advances in radar front-end hardware such as solid-state transmitters, digital ar-
bitrary waveform generators (DAWGs), active electronically scanned arrays (AESAs),
and high-performance embedded computing (HPEC) have afforded an opportunity to re-
examine the design of what and how a radar transmits its spatio-temporal radio frequency
(RF) signals. Conventional modern radars generally use nonadaptive transmit configura-
tions that typically optimize some metric associated with a multidimensional ambiguity
function (e.g., range, Doppler, angle [1]) and do not adapt the transmitter to an ever-
changing target and interference channel. Common examples include the very popular
constant modulus linear frequency modulated (LFM) waveform and low sidelobe trans-
mit antennas [1]. However, since the output signal-to-interference-plus-noise ratio (SINR)
depends on the transmit characteristics, it is natural to ask: for a given channel model,
what is the optimum transmit/receive configuration?

Adaptive processing has long been implemented in the receive chain of radar, begin-
ning with automatic gain control and cell-averaging constant false alarm rate (CA-CFAR)
[2] all the way to today’s space-time adaptive processing (STAP) [3]. However, adaptivity
in the transmit chain is virtually nonexistent, save for mode adaptivity such as switching
in different nonadaptive waveforms such as pulse repetition frequency (PRF) and band-
width. This chapter develops the basic theory of optimal transmit/receive design using
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a multi-input, multi-output (MIMO) formulation that can account for all potential de-
grees of freedom (DOFs) such as waveform (fast-time), angle, and polarization. Various
applications and examples are provided to further illustrate the potential impact of joint
transmit/receive adaptivity.

3.1.1 Organization

This chapter is organized as follows. Section 3.2 introduces the basic MIMO channel
formulation and derives the optimal transmitter/receiver configuration for the additive
colored noise (ACN) case. Several examples exercising different DOFs (fast-time, spa-
tial) are then presented to illustrate the basic theory and demonstrate the flexibility of the
formulation. Next in Section 3.3, the formalism is extended to account for the basic maxi-
mizing signal-to-clutter ratio (SCR) problem. In Section 3.4, a basic theory for optimizing
transmit/receive configuration for the target ID problem is introduced. The concept of
constrained MIMO waveform design is addressed in Section 3.5 to account for important
real-world constraints such as constant modulus. Finally, in Section 3.6, the idea of adap-
tive MIMO waveform design is introduced when the channel must be estimated on the fly.

3.1.2 Key Points

• Fundamental theory for optimum MIMO waveform design

• MIMO waveforms for maximum SINR (additive colored noise case)

• MIMO waveforms for maximizing signal to clutter

• MIMO waveforms for target ID

• Constrained optimum MIMO waveform design

• Adaptive MIMO waveform design

3.1.3 Acronyms

Acronyms that are commonly used in this chapter include the following:

ACN additive colored noise
AGCN additive Gaussian colored noise
AOA angle-of-arrival
CA-CFAR cell-averaging constant false alarm ratio
CNR clutter-to-noise ratio
DOFs degrees-of-freedom
FIR finite impulse response
GMTI ground moving target indication
HVT high value target
i.i.d independent and identically distributed
LTI Linear Time Invariant
PRF pulse repetition frequency
Rx receiver
SAR synthetic aperture radar
SCR signal-to-clutter ratio
SINR signal-to-interference-plus-noise ratio
SNR signal-to-noise ratio
STAP space-time adaptive processing
Tx transmitter
ULA uniform linear array
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3.2 OPTIMUM MIMO WAVEFORM DESIGN FOR
THE ADDITIVE COLORED NOISE CASE

Consider the basic radar block diagram in Figure 3-1. A generally complex-valued and mul-
tidimensional transmit signal, s ∈ C

N , (i.e., an N -dimensional multi-input (MI) signal),
interacts with a target denoted by the target transfer matrix HT ∈ C

M×N . The resulting
M-dimensional multi-output (MO) signal (echo), y ∈ C

M , is then received along with
ACN n ∈ C

M . The vector–matrix formulation is completely general inasmuch as any
combination of spatial and temporal dimensions can be represented.

For example, the N -dimensional input vector s could represent the N complex (i.e.,
in-phase/quadrature, or I/Q [4]) samples of a single-channel transmit waveform s(t), that is,

s =

⎡
⎢⎢⎢⎣

s(τ1)

s(τ2)
...

s(τN )

⎤
⎥⎥⎥⎦ (3.1)

The corresponding target transfer matrix, HT , would thus contain the corresponding
samples of the complex target impulse response, hT (t), which for the causal linear time-
invariant (LTI) case would have the form [5]

HT =

⎡
⎢⎢⎢⎢⎢⎣

h[0] 0 0 · · · 0
h[1] h[0] 0 · · · 0
h[2] h[1] h[0] · · · 0

...
. . .

...

h[N − 1] h[1] h[0]

⎤
⎥⎥⎥⎥⎥⎦ (3.2)

“Channel”

Targets,
Jamming, Noise

Transmitter(s) Receivers(s)

“Target” Optimum Detection
Statistic

Σ
+

+
WHT

Receiver

w ∈   M

. . .

. . .

N ∈   M ~ R ∈   M×M 

y ∈   MS ∈   N

HT  ∈   M×N

FIGURE 3-1
Fundamental
multichannel radar
block diagram for
the AGCN case. Our
objective is to
design both the
transmit (i.e., s) and
receive (i.e., w)
functions so as to
maximize the output
SINR given the
channel
characteristics.
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Without loss of generality we have assumed uniform time sampling, that is, τk = (k−1)T ,
where T is a suitably chosen sampling interval [6]. Note also that for convenience and a
significant reduction in mathematical nomenclature overhead N = M is used, which is
the same number of transmit/receive DOF (e.g., time, space). The reader is encouraged to,
where desired, reinstate the inequality and confirm that the underlying equations derived
throughout this chapter have the same basic form except for differing vector and matrix
dimensionalities. Also note that in general HT is stochastic.

The formalism is readily extensible to the multiple-transmitter, multiple-receiver case.
For example, if there are three independent transmit/receive channels (e.g., an AESA),
then the input vector s of Figure 3-1 would have the form

s =
⎡
⎣ s1

s2

s3

⎤
⎦ ∈ C

3N (3.3)

where si ∈ C
N denotes the samples (as in (3.1)) of the transmitted waveform out of the

i-th transmit channel. The corresponding target transfer matrix would in general have the
form

HT =
⎡
⎣ H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤
⎦ ∈ C

3N×3N (3.4)

where the submatrix Hi, j ∈ C
N×N is the transfer matrix between the i-th receive and j-th

transmit channels for all time samples of the waveform.
These examples make clear that the matrix–vector, input–output formalism is com-

pletely universal and can accommodate whatever transmit/receive DOF desired. Returning
to Figure 3-1, we now wish to jointly optimize the transmit/receive functions. We will find
it convenient to work backward: to begin by optimizing the receiver as a function of the
input and then finally optimizing the input and thus the overall output SINR.

For any finite norm input s, the receiver that maximizes output SINR for the ACN
case is the so-called whitening (or colored noise) matched filter, as shown in Figure 3-2
[7]. Note that for the additive Gaussian colored noise (AGCN) case, this receiver is also
statistically optimum [7].

If R ∈ C
N×N denotes the total interference covariance matrix associated with n, which

is further assumed to be independent of s and Hermitian positive definite [8] (guaranteed
in practice due to ever-present receiver noise [7]), then the corresponding whitening filter

FIGURE 3-2 The
optimum receiver for
the ACN case
consists of a
whitening filter
followed by a white
noise matched filter.

Whitening

Filter

Target
Echo 

Hw

Matched

Filter

ZS

y + n

Z = ZS + Zn
          = Hw y + Hw n wz = R–1y

Hw = R– 12
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is given by [7]:

Hw = R− 1
2 (3.5)

The reader should verify the whitening properties of (3.5) (see problem 2 and [9]).
The output of the linear whitening filter, z ∈ C

N , will consist of signal and noise
components, zs, zn , respectively, given by

z = zs + zn

= Hwys + Hwn (3.6)

= Hw HT s + Hwn

where ys ∈ C
N denotes the target echo as shown in Figure 3-2 (i.e., the output of HT ).

Since the noise has been whitened via a linear—in this case full-rank—transformation
[7]), the final receiver stage consists of a white noise matched filter of the form (to within
a multiplicative scalar)

wz = zs ∈ C
N (3.7)

The corresponding output SNR is thus given by

SNRo =
∣∣w′

zzs

∣∣2

var (w′
zzn)

=
∣∣z′

szs

∣∣2

var (z′
szn)

=
∣∣z′

szs

∣∣2

E{z′
sznz′

nzs} (3.8)

=
∣∣z′

szs

∣∣2

z′
s E{znz′

n}zs

=
∣∣z′

szs

∣∣2

z′
szs

= ∣∣z′
szs

∣∣
where var(·) denotes the variance. Note that due to the whitening operation E

{
znz′

n
} = I .

In words, the output SNR is proportional to the energy in the whitened target echo.
This fact is key to optimizing the input function: Chose s (the input) to maximize the
energy in the whitened target echo:

max
{s}

∣∣z′
szs

∣∣ (3.9)

Substituting zs = Hw HT s into (3.9) yields the objective function that explicitly depends
on the input

max
{s}

∣∣s′ (H ′ H
)

s
∣∣ (3.10)
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where

H
�= Hw HT (3.11)

Recognizing that (3.10) involves the magnitude of the inner product of two vectors s
and (H ′ H)s, we readily have from the Cauchy–Schwarz theorem [10] the condition that
s must satisfy to yield a maximum, namely, s must be collinear with (H ′ H)s:(

H ′ H
)

sopt = λmaxsopt (3.12)

In other words, the optimum input sopt must be an eigenvector of (H ′ H) with associated
maximum eigenvalue.

The previous set of input–output design equations represents the absolute optimum
that any combination of transmit/receive operations can achieve and thus are fundamen-
tally important in ascertaining the value of advanced adaptive methods (e.g., adaptive
waveforms, transmit/receive beamforming). Note also that (3.12) can be generalized to
the case where the target response is random:

E
{

H ′ H
}

sopt = λmaxsopt (3.13)

In this case, sopt maximizes the expected value of the output SINR.
Next we illustrate the application of the previously given optimum design equations

to the additive colored noise problem arising from a broadband multipath interference
source.

EXAMPLE 3.1

Additive Colored Noise Example Arising from Broadband Multipath
Interference

This example illustrates the optimum transmit/receive configuration for maximizing output
SINR in the presence of colored noise interference arising from a multipath broadband noise
source. More specifically, for the single transmit/receive channel case, it derives the optimum
transmit pulse modulation (i.e., pulse shape).

Figure 3-3 illustrates a nominally broadband white noise source undergoing a series of
multipath scatterings that in turn colors the noise spectrum [11]. Assuming (for simplicity) that
the multipath reflections are dominated by several discrete specular reflections, the resultant
signal can be viewed as the output of a causal tapped delay line filter (i.e., an FIR filter [5]) of
the form

hmp[k] = α0δ[k] + α1δ[k − 1] + · · · + αq−1δ[k − q − 1] (3.14)

that is driven by white noise. The corresponding input–output transfer Hmp ∈ C
N×N is thus

given by

Hmp =

⎡
⎢⎢⎢⎢⎣

hmp[0] 0 · · · 0

hmp[1] hmp[0]
...

...
. . . 0

hmp[N − 1] · · · hmp[1] hmp[0]

⎤
⎥⎥⎥⎥⎦ (3.15)
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Multipath
Channel

n(t)

hMP(t)
nMP(t) = n(t) ∗ hMP(t)

White Noise Colored Noise

White Noise
Source

MultipathMultipath

Direct Path

FIGURE 3-3
Illustration of
colored noise
interference resulting
from a broadband
(i.e., white noise)
source undergoing
multipath reflections.

In terms of the multipath transfer matrix, Hmp, the colored noise interference covariance matrix
is given by

E
{

nn′} = E
{

Hmpvv′ H ′
mp

}
= Hmp E

{
vv′}H ′

mp

= Hmp H ′
mp

= R

(3.16)

where the driving white noise source v ∈ C
N is a zero mean complex vector random variable

with an identity covariance matrix:

E
{

vv′} = I (3.17)

Assuming a unity gain point target at the origin, that is, hT [k] = δ[k], yields a target
transfer matrix HT ∈ C N×N given by

HT =

⎡
⎢⎢⎢⎢⎣

hT [0] 0 · · · 0

hT [1] hT [0]
...

...
. . . 0

hT [N − 1] · · · hT [1] hT [0]

⎤
⎥⎥⎥⎥⎦

= I

(3.18)

While certainly a more complex (and thus realistic) target model could be assumed, we wish
to focus on the impact the colored noise has on shaping the optimum transmit pulse. We will
introduce more complex target response models in the target ID section.

Figure 3-4 shows the in-band interference spectrum for the case when α0 = 1, α2 =
0.9, α5 = 0.5, α10 = 0.2, and all other coefficients are set to zero. The total number of fast-time
(range bin) samples was set to both a short-pulse case of N = 11 (Figure 3-4a) and a long-pulse
case of N = 100 (Figure 3-4b). Note that the multipath colors the otherwise flat noise spectrum.
Also displayed is the spectrum of a conventional (and thus nonoptimized) LFM pulse with a
time–bandwidth product,βτ , of 5 (Figure 3-4a) and 50 (Figure 3-4b), respectively [12, 13].
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FIGURE 3-4
Spectra of the
colored noise
interference along
with conventional
and optimal pulse
modulations.
(a) Short-pulse case
where total duration
for the LFM and
optimum pulse are
set to 11 range bins
(fast-time taps).
(b) Long-pulse case
where total duration
for the LFM and
optimum pulse are
set to 100 range
bins. Note that in
both cases the
optimum pulse
attempts to
anti-match to the
colored noise
spectrum under the
frequency resolution
constraint set by the
total pulse width.

5

10

0

−10

−5
M

ag
ni

tu
de

 (d
B

)

–0.5 0 0.5
−20

−15

Frequency
(a)

Noise Spectrum
LFM (N = 11)
Optimum (N = 11)

5

10

0

−10

−5

M
ag

ni
tu

de
 (d

B
)

0 0.05 0.1 0.15 0.2 0.25 0.35 0.450.40.3 0.5
−20

−15

Frequency
(b)

Noise Spectrum
LFM (N = 100)
Optimum (N = 100)

Given R from (3.16), the corresponding whitening filter Hwis given by

Hw = R− 1
2 (3.19)

Combining (3.19) with (3.18), the total composite channel transfer matrix H is thus given by

H = Hw HT = Hw = R− 1
2 (3.20)

Substituting (3.20) into (3.12) yields

R−1sopt = λsopt (3.21)
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That is, the optimum transmit waveform is the maximum eigenfunction associated with the
inverse of the interference covariance matrix. The reader should verify that this is also the
minimum eigenfunction of the original covariance matrix R and thus can be computed without
matrix inversion.

Displayed in Figures 3-4a and 3-4b are the spectra of the optimum transmit pulses obtained
by solving (3.21) for the maximum eigenfunction–eigenvalue pair for the aforementioned
short- and long-pulse cases, respectively. Note how the optimum transmit spectrum naturally
emphasizes portions of the spectrum where the interference is weak—which is an intuitively
satisfying result.

The SINR gain of the optimum short pulse, SINRopt, relative to that of a nonoptimized
chirp pulse, SINRL F M , is

SINRgain
�= SINRopt

SINRLFM
= 7.0 dB (3.22)

while for the long-pulse case

SINRgain
�= SINRopt

SINRLFM
= 24.1 dB (3.23)

The increase in SINR for the long-pulse case is to be expected since it has finer spectral
resolution and can therefore more precisely shape the transmit modulation to antimatch the
interference. Of course, the unconstrained optimum pulse has certain practical deficiencies
(e.g., poorer resolution, compression sidelobes) compared with a conventional pulse. We will
revisit these issues in Section 3.5 where constrained optimization is introduced.

Example 3.1 is similar in spirit to the spectral notching waveform design problem
that arises when strong co-channel narrowband interferers are present [14]. In this case it
is desirable not only to filter out the interference on receive but also to choose a transmit
waveform that minimizes energy in the co-channel bands. The reader is encouraged to
experiment with different notched spectra and pulse length assumptions and to apply (3.12)
as in example 3.1. Non-impulsive target models can also be readily incorporated.

3.3 OPTIMUM MIMO DESIGN FOR MAXIMIZING
SIGNAL-TO-CLUTTER RATIO

The joint MIMO optimization of the transmit and receive functions for the general additive
colored noise plus clutter (signal-dependent noise) has been shown to result in a highly
nonlinear problem [15] (though efficient iterative methods have been developed to solve
these equations [15]). In practice, however, there is often a natural “separation princi-
ple” between additive colored noise (signal independent) and clutter (signal dependent).
For example, narrowband electromagnetic interference (EMI) resulting from co-channel
interference might require fast-time receiver and transmit spectral notching [14], leav-
ing the slow-time or spatial DOF available for clutter suppression. Similarly, adaptive
beamforming for broadband jammer nulling can be separated from the clutter suppression
problem in a two-stage approach (see, e.g., [16]). We will thus concentrate in this section
on the clutter dominant case and focus solely on maximizing the output signal-to-clutter
ratio (SCR).
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FIGURE 3-5
Radar signal block
diagram for the
clutter dominant
case illustrating the
direct dependency
of the clutter signal
on the transmitted
signal.

Target
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+

+

HT

Hc ∈   N×N

HT  ∈   N×N

S ∈   N ys ∈   N ys  + nc

Clutter

Hc
nc ∈   N

Unlike the previous colored noise case in Section 3.2, clutter (i.e., channel reverber-
ations) is a form of signal-dependent noise [17, 18] since the clutter returns depend on
the transmit signal characteristics (e.g., transmit antenna pattern and strength, operating
frequencies, bandwidths, polarization). Referring to Figure 3-5, the corresponding SCR
at the input to the receiver is given by

SCR = E
{

y′
T yT

}
E

{
y′

cyc
}

= s′E
{

H ′
T HT

}
s

s′E
{

H ′
c Hc

}
s

(3.24)

where Hc ∈ C
N×N denotes the clutter transfer matrix, which is generally taken to be

stochastic. Equation (3.24) is a generalized Rayleigh quotient [8] that is maximized when
s is a solution to the generalized eigenvalue problem

E
{

H ′
T HT

}
s = λE

{
H ′

c Hc
}

s (3.25)

with corresponding maximum eigenvalue. When E
{

H ′
c Hc

}
is positive definite, (3.25) can

be converted to an ordinary eigenvalue problem of the form we have already encountered,
specifically,

E
{

H ′
c Hc

}−1
E

{
H ′

T HT
}

s = λs (3.26)

Applying equations (3.25) and (3.26) to the full-up space-time clutter suppression of
ground moving target indicator (GMTI) clutter is available in [19]. Due to space limitations,
we will instead consider its application to the sidelobe target suppression problem, which
is very closely related to the ground clutter interference issue.

EXAMPLE 3.2

Sidelobe Target Suppression

Consider a narrowband N = 16 element uniform linear array (ULA) with half-wavelength
interelement spacing and a quiescent pattern (Figure 3-6). In addition to the desired target at
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FIGURE 3-6
Illustration of
proactive sidelobe
target blanking on
transmit achieved by
maximizing the SCR.
Note the presence of
nulls in the directions
of competing targets
while preserving the
desired mainbeam
response.

a normalized angle of θ̄ = 0, there are strong sidelobe targets at θ̄1 = −0.3, θ̄2 = +0.1, θ̄3 =
+0.25, where a normalized angle is defined as

θ̄
�= d

λ
sin θ (3.27)

In (3.27) d is the interelement spacing of the ULA, and λ is the operating wavelength (consistent
units and narrowband operation assumed).

The presence of these targets (possibly large clutter discretes) could have been previously
detected, thus making their AOAs are known. Also, their strong sidelobes could potentially
mask weaker mainlobe targets. With this knowledge, it is desired to minimize any energy
from these targets leaking into the mainbeam detection of the target of interest by nulling on
transmit, or placing transmit antenna pattern nulls in the directions of the unwanted targets.

For the case at hand, the (m, n)-th elements of the target and interferer transfer matrices
are given, respectively, by

[HT ]m,n = e jϕ (const.) (3.28)

[Hc]m,n = α1e j2π(m−n)θ̄1 + α2e j2π(m−n)θ̄2 + α3e j2π(m−n)θ̄3 (3.29)

where ϕ is an overall bulk delay (two way propagation) that does not affect the solution to
(3.25) and will thus be subsequently ignored, and [Hc]m,n is the (m, n)-th element of the clutter
transfer matrix and consists of the linear superposition of the three target returns resulting from
transmitting a narrowband signal from the n-th transmit element and receiving it on the m-th
receive element of a ULA that uses the same array for transmit and receive [3, 13]. Note that
in practice there would be a random relative phase between the signals in (3.29), which for
convenience we have ignored but which can easily be accommodated by taking the expected
value of the kernel H ′

c Hc .
Solving (3.25) for the optimum eigenvector yields the transmit pattern that maximizes the

SCR, which is the pattern also displayed in Figure 3-6. The competing target amplitudes were
set to 40 dB relative to the desired target and 0 dB of diagonal loading was added to H ′

c Hc

to improve numerical conditioning and allow for its inversion. Although this is somewhat
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arbitrary, it does provide a mechanism for controlling null depth, that in practice is limited by
the amount of transmit channel mismatch [20]. Note the presence of transmit antenna pattern
nulls in the directions of the competing targets as desired.

EXAMPLE 3.3

Optimal Pulse Shape for Maximizing SCR

In this simple example, we rigorously verify an intuitively obvious result regarding pulse shape
and detecting a point target in uniform clutter: the best waveform for detecting a point target in
independent and identically distributed (i.i.d) clutter is itself an impulse (i.e., a waveform with
maximal resolution), a well-known result rigorously proven by Manasse [21] using a different
method.

Consider a unity point target, arbitrarily chosen to be at the temporal origin. Its corre-
sponding impulse response and transfer matrix are respectively given by

hT [n] = δ[n] (3.30)

and

HT = IN×N (3.31)

where IN×N denotes the N × N identity matrix. For uniformly distributed clutter, the corre-
sponding impulse response is of the form

hc[n] =
N−1∑
k=0

γ̃kδ[n − k] (3.32)

where γ̃i denotes the complex reflectivity random variable of the clutter contained in the i-th
range cell (i.e., fast-time tap). The corresponding transfer matrix is given by

H̃c =

⎡
⎢⎢⎢⎢⎢⎣

γ̃0 0 0 · · · 0
γ̃1 γ̃0

γ̃2 γ̃1 γ̃0
...

. . .

γ̃N−1 γ̃N−2 γ̃N−3 · · · γ̃0

⎤
⎥⎥⎥⎥⎥⎦ (3.33)

Assuming that the γ̃i values are i.i.d., we have

E
{
γ̃ ∗

i γ̃ j
} = Pcδ[i − j] (3.34)

and thus

E
{[

H̃ ′
c H̃c

]
i, j

}
=

{
0, i �= j

(N + 1 − i)Pc, i = j
(3.35)

where []i, j denotes the (i, j)-th element of the transfer matrix. Note that (3.35) is also diagonal
(and thus invertible), but with nonequal diagonal elements.

Finally, substituting (3.31) and (3.35) into (3.26) yields

E
{

H̃ ′
c H̃c

}−1
s = λs (3.36)
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where

E
{

H̃ ′
c H̃c

}−1 = 1

Pc

⎡
⎢⎢⎢⎣

d1 0 · · · 0
0 d2

. . .

0 · · · dN

⎤
⎥⎥⎥⎦ (3.37)

and

di
�= (N + i − 1)−1 (3.38)

It is readily verified that the solution to (3.36) yielding the maximum eigenvalue is given by

s =

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ (3.39)

Thus the optimum pulse shape for detecting a point target is itself an impulse. This should be
immediately obvious since it is the shape that excites the range bin only with the target and
zeros out all other range bin returns that contain competing clutter.

Of course, transmitting a short pulse (much less an impulse) is problematic in the real
world (e.g., creating extremely high peak power pulses) thus an approximation to a short pulse
in the form of a spread spectrum waveform (e.g., LFM) is often employed [12]. This example
also illuminates that in uniform random clutter nothing is gained by sophisticated pulse shaping
for a point target other than to maximize bandwidth (i.e., range resolution) [21]. The interested
reader is referred to [19] for further examples of optimizing other DOF (e.g., angle-Doppler)
for the clutter mitigation problem.

Up to this point we have been focused on judiciously choosing the transmit/receive
DOF to maximize SINR or SCR. In the next section we will extend this framework to the
target identification problem.

3.4 OPTIMUM MIMO DESIGN FOR TARGET
IDENTIFICATION

Consider the problem of determining target type when two possibilities exist (the multitar-
get case is addressed later in this section). This can be cast as a classical binary hypothesis
testing problem [7]:

(Target 1) H1 : y1 + n = HT1 s + n
(Target 2) H2 : y2 + n = HT2 s + n

(3.40)

where HT1, HT2 denote the target transfer matrices for targets 1 and 2, respectively. For
the AGCN case, the well-known optimum receiver decision structure consists of a bank
of matched filters, each tuned to a different target assumption, followed by comparator as
shown in Figure 3-7 [7]. Note that (3.40) presupposes that either Target 1 or 2 is present, but
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FIGURE 3-7
Optimal receiver
structure for the
binary (two-target)
hypothesis testing
AGCN problem.

Matched
Filter

#2
(Target 2)

Comparator
H1

H2

><

Matched
Filter

#1
(Target 1)

not both. Also, it has been tacitly assumed that a binary detection test has been conducted
to ensure that a target is indeed present [7]. Alternatively, the null hypothesis (no target
present) can be included in the test as a separate hypothesis.

Figure 3-8 illustrates the situation at hand. If Target-1 is present, the observed signal
y1+n will tend to cluster about the #1 point in observation space—which could include any
number of dimensions relevant to the target ID problem (e.g., fast-time, angle, Doppler,
polarization). The uncertainty sphere (generally ellipsoid for AGCN case) surrounding #1
in Figure 3-7 represents the 1-sigma probability for the additive noise n—and similarly for
#2. Clearly, if y1 and y2 are relatively well separated, the probability of correct classification
is commensurately high.

Significantly, y1 and y2 depend on the transmit signal s, as shown in (3.40). Conse-
quently, it should be possible to select an s that maximizes the separation between y1 and
y2, thereby maximizing the probability of correct classification under modest assumptions
regarding the conditional probability density functions (PDFs) (e.g., unimodality), that is,

max
{s}

∣∣d′d
∣∣ (3.41)

r3

Received Signal
Observation Space

Target-2

Target-1
y2

r2

“Uncertainty Sphere”
due to Noise, Modeling

Errors, etc.

y1

r1

Distance Metric:
y1 − y2

“Separation”

FIGURE 3-8 Illustration of the two-target ID problem. The goal of the joint
transmitter/receiver design is to maximally separate the received signals in observation
space, which in turn maximizes the probability of correct classification for the additive
unimodal monotonic distributed noise case (e.g., AGCN).
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where

d �= y1 − y2

= HT1 s − HT2 s
= (

HT1 − HT2

)
s

�= Hs

(3.42)

and where

H
�= HT1 − HT2 (3.43)

Substituting (3.42) into (3.41) yields

max
{s}

∣∣s′ H ′ Hs
∣∣ (3.44)

This is precisely of the form (3.10) and thus has a solution yielding maximum separation
given by (

H ′ H
)

sopt = λmaxsopt (3.45)

It is noted that (3.45) has an interesting interpretation: sopt is that transmit input that
maximally separates the target responses and is thus the maximum eigenfunction of the
transfer kernel H ′ H formed by the difference between the target transfer matrices (i.e.,
(3.43)). Again if the composite target transfer matrix is stochastic, H ′ H is replaced with
its expected value E

{
H ′ H

}
in (3.45).

EXAMPLE 3.4

Two-Target Identification Example

Let h1[n] and h2[n] denote the impulse responses of targets #1 and #2, respectively (Figure 3-9).
Figure 3-10 shows two different (normalized) transmit waveforms—LFM and optimum
(per (3.46))—along with their corresponding normalized separation norms of 0.45 and 1,
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FIGURE 3-10
Transmit waveforms
employed in the
two-target
identification
example.

0.15

0.2

0.25
Chirp
Optimum

0

0.05

0.1

−0.15

−0.1

−0.05
N

or
m

al
iz

ed
 V

ol
ta

ge

0 5 10 15 20 25 30 35 40 45 50
−0.25

−0.2

Time

dchirp  = 0.45

dopt  = 1

respectively, which corresponds to 6.9 dB improvement in separation. To determine the rel-
ative probabilities of correct classification for the different transmit waveforms, one would
first need to set the SNR level, which fixes the conditional PDF herein assumed to be circular
Gaussian, and then to measure the amount of overlap to calculate the probability [7].

An examination of Figure 3-11 reveals the mechanism by which enhanced separation is
achieved. It shows the Fourier spectrum of H(ω) = HT1(ω) − HT2(ω), along with that of
Sopt(ω). Note that Sopt(ω) places more energy in spectral regions where H(ω) is large (i.e.,
spectral regions where the difference between targets is large, which is again an intuitively
appealing result).

While pulse modulation was used to illustrate the optimum transmit design equations,
we could theoretically have used any transmit DOF (e.g., polarization). The choice clearly
depends on the application at hand.

FIGURE 3-11
Comparison of the
two-target difference
spectrum and the
optimum pulse
spectrum. Note that
the optimum pulse
emphasizes parts of
the spectrum where
the two targets differ
the most.
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Multitarget Case Given L targets in general, we wish to ensure that the L-target re-
sponse spheres are maximally separated (an inverse sphere packing problem [22]). To
accomplish this, we would like to jointly maximize the norms of the set of separations
{‖di j‖ | i = 1 : L; j = i + 1 : L}:

max
s

L∑
i=1

L∑
j=i+1

∣∣d′
i j di j

∣∣ (3.46)

Since, by definition, di j is given by

di j
�= (

HTi − HTj

)
s �= Hi j s (3.47)

(3.46) can be rewritten as

max
s

s′
⎛
⎝ L∑

i=1

L∑
j=i+1

H ′
i j Hi j

⎞
⎠ s �= s′K s (3.48)

Since K ∈ C N×N is the sum of positive semidefinite matrices, it shares this same property,
and thus the optimum transmit input satisfies

K sopt = λmaxsopt (3.49)

EXAMPLE 3.5

Multitarget Identification

Figure 3-12 depicts the impulse responses of three different targets, two of which are the
same as in Example 3.4. Solving (3.48) and (3.49) yields an optimally separating waveform
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whose average separation defined by (3.46) is 1.0. This is compared with 0.47 for the LFM
of Example 3.4, an improvement of 6.5 dB, which is slightly less than the previous two-target
example. As expected, the optimum waveform significantly outperforms the unoptimized pulse
waveform such as the LFM.

3.5 CONSTRAINED OPTIMUM MIMO RADAR

Often there are a number of practical considerations may preclude transmitting the uncon-
strained optimum solutions developed so far. We will thus consider two cases of constrained
optimization: linear and nonlinear.

Case 3.1: Linear Constraints
Consider the linearly constrained version of the input optimization problem:

max
{s}

∣∣s′ H ′ Hs
∣∣ (3.50)

subject to: Gs = 0 (3.51)

where G ∈ C
Q×N . To avoid the overly constrained case, it is assumed that Q < N . For

example, the rows of G could represent steering vectors associated with known interferers
such as unwanted targets or clutter discretes to which we wish to apply transmit nulls.

Equation (3.51) defines the feasible solution subspace for the constrained optimization
problem. It is straightforward to verify that the projection operator

P = I − G ′ (GG ′)−1
G (3.52)

projects any x ∈ C
N into the feasible subspace [23]. Thus, we can first apply the projection

operator then perform an unconstrained subspace optimization to obtain the solution to
(3.50) and (3.51), that is,

max
{s}

∣∣s′ P ′ H ′ H Ps
∣∣ (3.53)

From (3.53) it is readily apparent that the constrained optimum transmit input satisfies

P ′ H ′ H Psopt = λmaxsopt (3.54)

EXAMPLE 3.6

Prenulling on Transmit

If there are known AOAs for which it is desired not to transmit (e.g., unwanted targets, clut-
ter discrete, keep-out zones), it is possible to formulate a linearly constrained optimization
accordingly.

Assume that there is a desired target at θ̄T as well as two keep-out angles (normalized) θ̄I1

and θ̄I2 . The corresponding elements of the target transfer matrix HT ∈ C
N×N , assuming an

N -element ULA, are thus given by

[HT ]m,n = e j2π(m−n)θ̄T (3.55)

where [HT ]m,n denotes the (m, n)-th element of the target transfer matrix.



Melvin-5220033 book ISBN : 9781891121531 September 14, 2012 17:33 105

3.5 Constrained Optimum MIMO Radar 105

−10

0

10

−40

−30

−20

−70

−60

−50

*

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−90

−80

Normalized Angle

*

M
ag

ni
tu

de
 (

dB
)

FIGURE 3-13
Example of a linearly
constrained
optimization in
which two interferers
are removed via the
projection
optimization
approach.

The keep-out constraints have the form

0 = Gs

=
[

s′
I1

s′
I2

]
s

(3.56)

where

sIk =

⎡
⎢⎢⎢⎢⎣

1
e j2πθ̄Ik

...

e j2π(N−1)θ̄Ik

⎤
⎥⎥⎥⎥⎦ (3.57)

Figure 3-13 shows the resulting constrained optimum transmit pattern for the case where
θ̄T = 0, θ̄I1 = −0.25, θ̄I2 = 0.4. As expected a peak is placed in the desired target direction
with nulls simultaneously placed in the keep-out directions.

Case 3.2: Nonlinear Constraints
In practice other generally nonlinear constraints may arise. One family of such constraints
relates to the admissibility of transmit waveforms, such as the class of constant modulus
and stepped frequency waveforms [12], to name but a few.

For example, if it is desired to transmit a waveform that is nominally of the LFM type
(or any other prescribed type) but that is allowed to modestly deviate to better match the
channel characteristics, then the nonlinear constrained optimization has the form

max
{s}

∣∣s′ H ′ Hs
∣∣ (3.58)

subject to:‖s − sLFM‖ ≤ δ (3.59)
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{s :

SLFM

i0

Ŝopt

s − sLFM    < δ }Ω =

Sopt

FIGURE 3-14 Illustration of a constrained optimization in which the signal should lie within
a subspace (in this case convex) defined to be close to a prescribed transmit input (in this
case an LFM waveform). The optimum relaxed projection is the point closest to the
unconstrained optimum but still residing in the subspace.

The previous and similar problems cannot generally be solved in closed form. However,
approximate methods can yield satisfactory results, and we will consider two here that are
based on very different approaches. These simpler methods could form the basis of more
complex methods, such as seeding nonlinear search methods.

Relaxed Projection Approach Figure 3-14 depicts the constrained optimization problem
in (3.58) and (3.59). It shows the general situation in which the unconstrained optimum
solution does not reside within the constrained (i.e., admissible) subspace . In this
particular case, the admissible subspace is a convex set [24], defined as

 = {s : ‖s − sLFM‖ ≤ δ} (3.60)

From Figure 3-14 it is also immediately evident that the admissible waveform closest (in
a normed sense) to the unconstrained optimum sopt lies on the surface of  along the
direction io, which is the unit norm vector that points from sLFM to sopt, i.e.,

io
�= sopt − sLFM∥∥sopt − sLFM

∥∥ (3.61)

Thus, the constrained waveform that is closest in norm to sopt is given by

ŝopt = sLFM + δio (3.62)

Note that if δ is allowed to relax to the point where δ = ∥∥sopt − sLFM

∥∥, then ŝopt = sopt.

EXAMPLE 3.7

Relaxed Projection Example

Here an LFM similarity constraint is imposed on the multipath interference problem consid-
ered in Example 3.1. Specifically, in Figure 3-15, we plot the loss in SINR relative to the
unconstrained long-pulse optimum solution originally obtained in Example 3.1 as a function
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Illustration of the
relaxed projection
method for
constrained
optimization. The
plot shows the SINR
improvement relative
to the unoptimized
LFM waveform of
example 3.1 versus
the normalized
relaxation parameter
δ. Note that for even
a modest relaxation
of 20% a nearly
10 dB gain in
performance is
achieved.

of δ, which is varied between 0 ≤ δ ≤ ‖sopt − sLFM‖. Note that for this example improvement
generally monotonically increases with increasing δ (except for a very small region near the
origin) and that sizeable SINR improvements can be achieved for relatively modest values
of the relaxation parameter. In other words, a waveform with LFM-like properties can be
constructed that still achieves significant SINR performance gains relative to an unoptimized
LFM.

Figure 3-16 shows the spectra of the unoptimized LFM of example 3.1 along with the
unconstrained optimum and the relaxed projection pulse with a 20% relaxation parameter. Note
how the relaxed pulse is significantly closer to the original LFM spectrum yet still achieves
nearly a 10 dB improvement in SINR relative to the LFM waveform.
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Constant Modulus and the Method of Stationary Phase As has become apparent from
the previous examples, spectral shaping plays a key role in achieving matching gains. The
stationary phase method has been applied to the problem of creating a nonlinear frequency
modulated (NLFM) pulse (and thus constant modulus in the sense that the modulus of
the baseband complex envelope is constant, i.e., |s(t)| = constant) with a prescribed
magnitude spectrum [5, 12].

Specifically, under fairly general conditions [5, 12] it is possible to relate instantaneous
frequency ω of a NLFM waveform to time t [5, 12]:

1

2π

ω∫
−∞

|S(ω)|2dω = k

t∫
0

dt = kt

t ∈ [0, T ]

(3.63)

where |S(ω)| is the magnitude spectrum of the optimum pulse. Here we have assumed a
constant modulus for the NLFM waveform resulting in a integral that is simply proportional
to time (see [5, 12] for the more general nonconstant modulus case) as well as a finite and
causal pulse.

Solving for ω as a function of t in (3.63) yields the frequency modulation that will
result in a transmit pulse with a magnitude spectrum equal to |S(ω)|, to within numerical
and other theoretical limitations [5, 12].

EXAMPLE 3.8

NLFM to Achieve Constant Modulus

Here we use the method of stationary phase to design a constant modulus NLFM pulse that
matches the magnitude spectrum of the optimum pulse derived for the multipath interference
problem considered in Example 3.1.

Figure 3-17 shows the solution to (3.63) (i.e., ω versus t) along with the optimum pulse
spectrum from Example 3.1 (long-pulse case). Note that as one would intuit, the frequency
modulation dwells at frequencies where peaks in the optimum pulse spectrum occur and
conversely note the regions in which the modulation speeds up to avoid frequencies where the
optimum pulse spectrum has nulls or lower energy content.

The constant modulus NLFM waveform so constructed was able to achieve an output
SINR that was within 6.0 dB of optimum compared with a 24 dB loss using an LFM waveform
of same energy and duration.

It is natural to ask if a NLFM waveform with the same spectral magnitude as the
optimum pulse (but not necessarily the same phase) will enjoy some (if not all) of the
matching gains. For the steady-state case (infinite time duration) this is indeed true, since
from Parseval’s [5] theorem the output energy is related to only the spectral magnitudes
(i.e., without their phases) of the input pulse and channel transfer function, that is,

1

2π

∞∫
−∞

|Y (ω)|2dω = 1

2π

∞∫
−∞

|H(ω)|2|S(ω)|2dω (3.64)
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FIGURE 3-17
Illustration of the use
of the method of
stationary phase to
create a constant
modulus NLFM
pulse whose
spectral magnitude
matches that of the
optimum pulse. The
NLFM pulse was
able to achieve an
output SINR that
was within 6.0 dB
of the optimum
compared with a
24 dB loss using an
LFM waveform of
same energy and
duration.

where Y (ω), H(ω), and S(ω)denote the Fourier transforms of the channel output, channel
impulse response, and input pulse, respectively. Note that the output energy in (3.64)
depends on the spectral magnitude of the input pulse (steady-state)—not the phase. Thus,
in theory an NLFM waveform that exactly matches the optimum pulse magnitude spectrum
will achieve the same matching gains in the steady-state limit (infinite pulse duration) for
all square integrable (finite norm) functions.

3.6 ADAPTIVE MIMO RADAR

Section 3.2 derived the optimal multidimensional transmit/receive (i.e., MIMO) design
equations that assumed exact knowledge (deterministic or statistical) of the channel (target
and interference). However, as those familiar with real-world radar are well aware, channel
characterization in large part must be performed on the fly, or adaptively. This is simply
a result of the dynamic nature of real-world targets and especially interference.

While a plethora of techniques have been developed for radar receiver adaptivity, es-
timating requisite channel characteristics for adapting the transmit function—especially
for transmit-dependent interference such as clutter—is a relatively new endeavor. In this
chapter, we explore several approaches for addressing the adaptive MIMO optimization
problem.
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In Section 3.6.1, we introduce techniques for the case when the channel characteristics
are independent of the transmit input—an example of which is additive colored noise jam-
ming. Perhaps not surprisingly, given the transmit independence, the channel estimation
techniques are essentially those often invoked in receive-only adaptivity (e.g., STAP [3]).

Section 3.6.2 introduces adaptive MIMO techniques for dynamic transmit array cal-
ibration, including the special case of cohere on target. This latter method enables the
cohering of RF transmissions of distributed radars for a specific high-value target (HVT)
of interest. The methods using the orthogonality approach to waveform design first in-
troduced by Bliss and Forsythe [25] can thus be viewed as a means for estimating the
MIMO channel. However, once an estimate of the channel is made, the optimum MIMO
transmit/receive functions should be employed.

3.6.1 Transmit-Independent Channel Estimation

As mentioned previously, a multitude of techniques has been developed for the so-called
transmit-independent case. A classic example is additive noise jamming [20]. For the
case where no a priori knowledge is available, the baseline method of sample covariance
estimation—and its many variants such as diagonal loading and principal components
[26, 27]—is often used. In addition to its statistical optimality properties (it is the maxi-
mum likelihood solution for the i.i.d. additive Gaussian noise case [7]), efficient parallel
processing implementations have been developed facilitating its real-time operation [28].

Figure 3-18 depicts a common procedure for estimating additive, transmit-independent
interference statistics. Specifically, the interference covariance matrix, R ∈ C N×N , is ap-
proximated by R̂ ∈ C N×N , where

R̂ = 1

L

∑
q∈

xqx′
q (3.65)

where xq ∈ C N denotes the N -dimensional receive array snapshot (e.g., spatial, spatiotem-
poral) corresponding to the q-th independent temporal sample (e.g., a range or Doppler
bin), and L denotes the number of i.i.d. samples selected from a suitable set of training
samples  to form the summation. As depicted in Figure 3-18, this training region is often
chosen to be close in range to the range cell of interest (though there are many variants of
this). If, moreover, the selected samples are Gaussian and i.i.d., then (3.65) can be shown
to provide the maximum likelihood estimate of R [7]. We illustrate this approach in the
following example.

FIGURE 3-18
Illustration of a
common method for
estimating the
interference
statistics for the
additive transmit-
independent
case.
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FIGURE 3-19
Effect of sample
support on output
SINR loss for the
multipath
interference scenario
of example 3.1.

EXAMPLE 3.9

Adaptive Multipath Interference Mitigation

This is a repeat of example 3.1 with the notable exception of unknown interference statistics
that must be estimated on the fly. As a consequence, an estimate of the covariance matrix
is used in (3.5) for the whitening filter rather than the actual covariance, as was the case in
Section 3.2.

Plotted in Figure 3-19 is the overall output SINR loss relative to the optimum for the
short-pulse case of example 3.1 as a function of the number of independent samples used in
(3.65). The results shown were based on 50 Monte Carlo trials (root mean square average)
with a jammer-to-noise ratio of 50 dB and a small amount of diagonal loading to allow for
inversion when the number of samples is less than 11 (positive semidefinite case).

It is interesting to note the rapid convergence and contrast this with SINR loss performance
for adaptive beamforming, which is generally significantly slower because we are estimating
the single dominant eigenvalue–eigenvector pair. For an authoritative examination of principal
components estimation and convergence properties, see [29].

3.6.2 Dynamic MIMO Calibration

Perhaps the earliest MIMO radar techniques have their origins in transmit antenna array
calibration [30, 31]. While techniques for estimating the receive array manifold using
cooperative or noncooperative sources have existed for quite some time [30], methods for
dynamically calibrating the transmit array manifold (e.g., AESAs) in situ are relatively
recent developments [31].

Figure 3-20 provides an example of using MIMO techniques to dynamically cali-
brate an AESA radar. Orthogonal waveforms are simultaneously transmitted from each
transmit/receive site of an AESA (typically a single subarray AESA). A cooperative re-
ceiver then decodes each individual signal, calculates the relative phases (or time delays),
and transmits this information back to the radar. By repeating this process for different
orientations, a detailed look-up table for the transmit steering vectors can be constructed
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FIGURE 3-20
Illustration of a
MIMO-based in situ
calibration
technique for an
AESA radar [30, 31].
(a) Conventional
receive array
calibration using a
known in-band
illuminator. (b) The
MIMO approach for
calibrating the
transmit array. (From
Steinberg and Yadin
[30] and Guerci and
Jaska [31]. With
permission.)
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onboard the radar platform. This in situ approach is basically a necessity for very large
AESAs in space since rigidity, which requires mass/weight, is not sufficient to maintain
prelaunch calibration [31].

EXAMPLE 3.10

MIMO Cohere-on-Target

An interesting special case of the previously mentioned dynamic in situ calibration procedure
is when transmit calibration is performed for a distributed radar focused on a single HVT, as
described by Coutts et al. [32].

Consider Figure 3-21, which depicts an airborne HVT that can be detected simultaneously
by two geographically disparate radars. Given the HVT nature of the target, it is desired to
have the two radars work coherently to maximize the overall SNR at each radar. To achieve
on-target coherency, the two waveforms from each radar need to interfere constructively. To
accomplish this, however, requires precise knowledge of the transmit pathways to a fraction
of a wavelength [32]—essentially a dynamic calibration.
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FIGURE 3-21
Illustration of the
MIMO
cohere-on-target
approach for
maximizing
distributed radar
performance. (From
Coutts et al. [32].
With permission.)

Drawing on MIMO-based calibration concepts, the requisite relative time delays between
the two radars (as seen by the target) can be estimated by simultaneously transmitting orthog-
onal waveforms, which are then detected and processed in each radar as follows:

• At each radar, the known one-way time delay to the target is subtracted from the total transit
time for the sister radar (precise time synchronization is assumed). The remaining time
delay is thus due to the first leg of the bistatic path (see Figure 3-21).

• By precompensating a joint waveform in each radar, the two waveforms can be made to
cohere on the target—resulting in a 3 dB SNR boost (ideally). If the previous procedure is
repeated for N radars, as much as a 10 log N dB gain in SNR is theoretically achievable.

While relatively straightforward to describe, the aforementioned procedure is replete with
many real-world difficulties including target motion compensation to a fraction of a wavelength
and precise phase and timing stability.

As mentioned previously, the orthogonal waveform MIMO radar approach can pro-
vide a means for adaptively estimating the composite target-interference channel since the
individual input-output responses can, under certain circumstances, be resolved simultane-
ously. However, once an estimate of the composite channel is achieved, the optimal MIMO
transmit/receive configuration derived in this chapter should be employed to maximize
SINR.

3.7 SUMMARY

In this chapter, the fundamental theory for joint optimization of the transmit and receive
functions was developed from first principles and applied to the maximization of SINR,
SCR, and correct classification for the target ID problem. Constrained optimization was
introduced to address additional requirements that often arise in practice, such as the use
of constant modulus waveforms to maximize transmitter efficiency. Lastly, basic adaptive
methods were introduced to address the real-world issue of estimating the requisite channel
information required when it is not available a priori.
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3.8 FURTHER READING

Further in-depth details and examples on optimum and adaptive MIMO waveform design,
including knowledge-aided methods, can be found in [19]. Further details on the orthogonal
MIMO approach can be found in [25].
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3.10 PROBLEMS

1. A noncasual impulse response can have nonzero values for negative time indices, that
is, h(−k) �= 0 for some positive k value. This can arise when the impulse response
is not associated with time, such as the case when k is a spatial index or when time
samples are processed in batch (buffered) fashion. Rederive the H matrix of equation
(3.2) when the impulse response has values from −M to M .

2. Verify that the whitening filter of equation (3.5) (i.e., Hw = R− 1
2 ) indeed results

in a unity variance diagonal output noise covariance, that is, cov(Hwn) = I , where
cov(·) denotes the covariance operator. (Hint: Hw is not a random variable and thus
is unaffected by the expectation operator.)



Melvin-5220033 book ISBN : 9781891121531 September 14, 2012 17:33 116

116 C H A P T E R 3 Optimal and Adaptive MIMO Waveform Design

3. Assume a target has a transfer matrix given by

HT =
[

1 1/
√

2
1/

√
2 1

]

a. What is the optimum input (eigenfunction) that maximizes SNR for the white noise
case?

b. If we interpret Hw as a target response polarization matrix in a H–V (horizon-
tal and vertical) basis, what is the optimum polarization direction, assuming H-
polarization corresponds to 0 degrees and V corresponds to 90 degrees?

4. The original formulation of equation (3.12) was in the analog domain [33, 34].

a. Assuming the composite channel transfer function (impulse response) is given by
the real valued LTI response h(t), show that the optimum transmit function s(t)
that maximizes output SNR satisfies∫ T

0
s(τ2)K (τ2, τ1)dτ2 = λs(τ1)

where

K (τ1, τ2)
�=

∫ T

0
h(t−τ1)h(t − τ2)dt

and where it is assumed that the pulse duration and receiver integration times are
equal to T .

b. Repeat assuming that the impulse response is complex valued.

5. Using MATLAB or some other suitable numerical processing software, compute the
H matrices for the short- and long-pulse cases of example 3.1 and verify the results
for the optimum transmit waveforms (short and long).

6. Repeat example 3.3 assuming that the target now spans two range bins, that is, δ[n]+
δ[n−1]. Does the result make sense in terms of minimizing interference from clutter?

7. For the two-target optimum ID problem, show that:

a. Maximizing the norm of the separation metric d �= y1 − y2 in equation (3.42) is
statistically optimum for the additive white noise case assuming a unimodal PDF
and monotonic distribution function.

b. Extend this to the additive colored noise case (same PDF and distribution as-
sumptions) and show that the separation metric to maximize is now the difference
between the whitened target echo responses.

8. The energy in the whitened target echo for the infinite duration case is given by

1

2π

∞∫
−∞

|Y (ω)|2dω = 1

2π

∞∫
−∞

|H(ω)|2|S(ω)|2 dω

where Y (ω), H(ω), S(ω)are the Fourier transforms of the whitened target echo, com-
posite channel transfer function, and input (transmit) waveform, respectively. Show
that the input S(ω) that maximizes the output energy satisfies |S(ω)| ∝ |H(ω)| [35].
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9. A constrained optimum MIMO approach can be developed based on recognizing
that the N -dimensional eigenspectrum of the generally positive definite composite
channel kernel H ′ H (or E

{
H ′ H

}
for the stochastic case) forms a continuum for which

some number k of eigenfunctions (and corresponding eigenvalues) retain matching
properties.

a. Assume that k orthonormal eigenfunctions of H ′ H , denoted by u1, . . . uk , with
associated eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λk > 0, are available and have bet-
ter matching properties than, say, a nominal nonadaptive quiescent waveform sq .
Derive an expression for the waveform sp that resides in the matched subspace
spanned by the k best eigenvectors. The resulting waveform can be viewed as a
type of constrained optimization in which the properties of the nominal waveform
(e.g., good range sidelobes) are traded for better SNR (see, e.g., [36]).

b. Show that in the limit as k → N , the matched subspace waveform sp → sq . (Hint:
The eigenfunctions of a positive definite (Hermitian) matrix form a complete basis.)
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