

Integrity ★ Service ★ Excellence

Multi-Domain Sensing Autonomy and Future Directions in Radar

for IDGA Military Radar Summit

26-28 February 2018

William J. Baldygo, Chief
P. Aaron Linn, Lead Engineer
Multi-Domain Sensing Autonomy Division
Sensors Directorate

Outline

Objectives: Provide an overview of AFRL Sensing Autonomy goals, technical challenges, and research directions.

- Motivation
- Vision & Goals
- Notional Mission Perspective
- Technical Challenges & Barriers
- Research Thrusts & Experimentation
- Future Directions in Radar
- Summary

Motivation

The Need for Change

- Adversary timelines are outpacing our ability to adapt and respond
 - Approach to knowledge generation is linear, manual, slow and not scalable
 - Only a small percentage of sensor data is used to generate knowledge
 - Currently USAF is good at generating knowledge using predefined meaning and specific tasks in a linear fashion
- Knowledge generation tends be stove-piped within a single domain, INT
- Agility and flexibility lacking

Sensing Autonomy Vision

Autonomy Vision: Timely, flexible knowledge creation to allow speed of decisions & effects that will collapse the adversary's OODA Loop.

Moving from a platform-focused to a mission effects-focused networked, distributed, flexible architecture

How do we network military capability so that we can ... achieve a decision speed that our adversaries can never match? – General Goldfein, CSAF, Future of War Conference March 2017

Autonomy Defined

- A capability (or a set of capabilities) that enables a particular action of a system to be automatic or, within programmed boundaries, "self-governing." USD(AT&L), 2012
- Computational capability for intelligent behavior that can perform complex missions in challenging environments with greatly reduced need for human intervention while promoting effective man-machine interaction. DoD Autonomy COI, Defense Innovation Marketplace, 2017
- Systems which have a set of intelligence-based capabilities that allow it to respond to situations that were not programmed or anticipated in the design; self government and self directed behavior with the human's proxy for decisions.
 USAF Autonomy Science and Technology Strategy, 2013
- Autonomous Systems (AS) must possess: AFRL Autonomy FAQs, 2017
 - Peer Flexibility: AS can change roles; e.g. subordinate, peer, supervisor
 - Task Flexibility: AS can change tasks (sensing/assessing/acting)
 - Cognitive Flexibility: AS can learn new behaviors/models over time
 - **Each contains the idea of change

An autonomous system must contain all three flexibilities!

AFRL Autonomy Initiative

Attributes & Features

Autonomy Autonomy Capability Autonomy in Team 3 at Motion (ACT 3) (A@R)

Attributes of Sensing Autonomy

- Goal of autonomy is to generate knowledge applicable across numerous tasks to break linearity
 - Understand the multi-domain mission environment as a single integrated battlespace; applies at all levels of instantiations
 - Tighter integration across ISR, Strike & EW functions/missions
 - Utilize multi-domain knowledge (in vastly greater quantities and varieties) for faster decisions and actions/effects
- Evolution of knowledge generation requires
 - Robust representation
 - Dynamic information flow and control
 - Flexible relationships between humans and machines
 - Scalable combination of cognitive, peer, and task flexibilities
 - Execute mission effects and assess them in a timely manner

Goal: Accelerate Our Knowledge of the Contested, Denied Environment to be inside the Adversary Decision Loop

Sensing Autonomy Impacts all Op Levels

Strategic

Focus: autonomous, multisource predictive analytics for ISR indications and warning

Operational

Focus: distributed and adaptive sensing in CDO air-to-ground targeting environments

Tactical

Focus: autonomous electronic warfare for platform protection and SEAD operations

- Pre-Day 0 ISR Persistence
- Find/Fix/Track/Intent
- IPoE ◆→ MDC2◆→ O-Plans
- "Keep 'em on the rail"

- System of System Mission Planning
- Manage Spectrum Dominance
- Distributed mission execution payloads

- Execute Mission Plan
- Tactical ISR/CAP/OCA/DCA
- Pos ID/Targeting/Engage/Assess
- Comms with other TACAIR agents

Sensing Autonomy OV-1

Sensing Autonomy Research Vectors

- Sensor resource management
- Multi-sensor/platform sensing & effects
- Multi-INT/domain sensing
- Cognitive EW
- Combat ID (ATR)
- Distributed processing
- Avionics cyber protections
- Constructive to mission-level sensing and effects MS&A

Note: "Sensing" includes the physical sensor through the processing required to generate the knowledge and understanding for a given task

Multi-Domain Effects Analysis

Autonomy Technologies and Critical Experiments

Sensing Autonomy Experiments

- Turn data into information and knowledge to support real-time, automated military operations
- Achieve high confidence over complexity of military operating conditions
- Incorporate learning for unknown objects and signals
- Flexibly leverage multiple heterogeneous, distributed knowledge sources to enable high confidence, context dependent decision-making
- Adaptively reason over current knowledge across multiple scales to optimize sensing resources and military effects in adversarial environments
- Autonomously manage internal and distributed sensor resources, platforms, communications, and effects for optimal aggregate performance
- Perform real-time adaptation for dynamic targets and environments

12

Collaborative Autonomy and Flexibility

- Observed signal's meaning varies for different agents
- The meanings are shared among agents
- Effect is chosen based on mission goals
- **Knowledge structure supports** relationship and context representation between agents

- 1. Observed IADS Signal Meaning
 - Threat → EW agent & Cyber agent
 - Coherent source → Targeting agent
- 2. Desired Effects
 - EW & Cyber agent → Countermeasure
 - Targeting agent → multi-static targeting of other adversary objects
 - Both effects required for mission
- 3. Reasoning
 - Agents share meaning of signal
 - 4. Effect Chosen
 - Cyber technique selected
 - **Deny info to IADS**
 - Signal used as source for targeting

Targeting Agent

Electronic Attack Agent

Cyber Agent

Agents physically reside across one or more platforms

13

Knowledge Representation & Reasoning

Collaborative Autonomy and Flexibility

- Observed signal's meaning varies for different agents
- The meanings are shared among agents
- Effect is chosen based on mission goals
- **Knowledge structure supports** relationship and context representation between agents

- 1. Observed IADS Signal Meaning
 - Threat → EW agent & Cyber agent
 - Coherent source → Targeting agent
- 2. Desired Effects
 - EW & Cyber agent → Countermeasure
 - Targeting agent → multi-static targeting of other adversary objects
 - Both effects required for mission
- 3. Reasoning
 - Agents share meaning of signal
 - 4. Effect Chosen
 - Cyber technique selected
 - **Deny info to IADS**
 - Signal used as source for targeting

Targeting Agent

Electronic Attack Agent

Cyber Agent

Agents physically reside across one or more platforms

15

Autonomy in Motion Sensing

TA PORCE REBEARCH LABORANTA

Functional Block Diagram

Future Directions in Radar

Flexibility (Cognitive, Task, Peer)

- Capability of radar systems must evolve to function as one of several agents within an autonomous sensing construct:
 - Agile wrt spectrum, modes, signal and data processing algorithms
 - Radar Modes (imaging, tracking), waveforms, dwell, revisit, DoFs
 - Coordination with other sensors/platform agents (i.e., negotiate bistatic/multistatic operation parameters, geometry)
 - Configure sensor agents to generate required knowledge
 - Geometry/sensor placement, platform velocity
 - Passive Operation (survivability, bistatic/multistatic, EW/SIGINT functions)
 - Resolution, revisit for ISR vs. strike functions
- Interaction required with multiple heterogeneous agents (other sensors, platforms performing other tasks) to provide context (i.e., POL)
 - Data exchange, timing

Future Directions in Radar

Flexibility (Cognitive, Task, Peer)

- Real-Time onboard processing with performance monitoring
 - Inform task effectiveness
- Reasoning & Cognitive Flexibility:
 - Cognitive radar has been active research area for several years
 - Methods for reasoning across desired performance metrics to choose appropriate radar parameters
 - Cognitive radar flexibilities must extend beyond just the radar:
 - Performance models of other sensors in the battlespace
 - Reason over radar observations to inform other sensors
 - Predictive analytics and COA development (i.e. what should the radar do?
- Peer Flexibility to <u>accept</u> cueing and tasking from multiple agents; <u>direct</u> tasks to other agents

Summary

- Numerous military challenges can be overcome by autonomy
 - Sensing autonomy is a particularly attractive application area
 - AiM and A@R suggest multiple opportunities from sensor/radar resource management to signal & data exploitation
 - Rapid generation of battlespace understanding and application of effects is the key
 - Multi-domain (i.e., air, space and cyber) as an integrated battlespace
- Future military radar must function as an agent within an autonomous construct fully employing three flexibilities:
 - Task, Peer, Cognitive
- Research investment and experimentation underway at AFRL to develop and demonstrate autonomous systems, including sensors and sensing systems

