Next Generation Sensors Employing Wideband, Agile, Multi-Function Capabilities and Technologies

2018 Military Radar Summit

LOCKHEED MARTIN

Jerald Nespor LM Senior Fellow

February 28, 2018

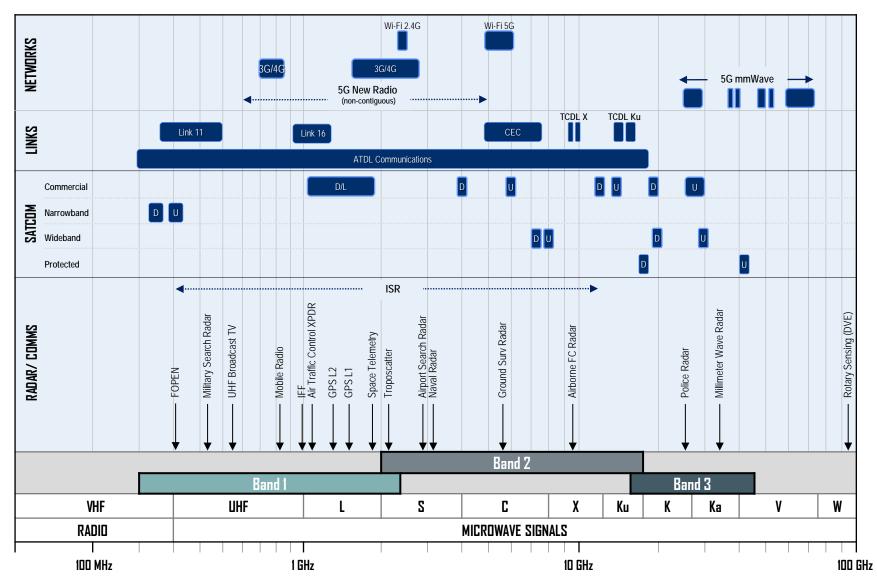
Agenda and Key Messages

Agenda

- The Challenge
 - Global Landscape
 - Sensor Convergence
 - Demand Pull
- Historical Overview
- Current and Future Trends
 - Architectures
 - Reconfigurable Parameters
 - Technologies
- Summary

Key Messages

- Existing military primary mission sensors provide significant capability
- Evolving technologies are enabling new multi-mission architectures
- Future sensors will be smaller, distributed, cohered and converged


The Challenge

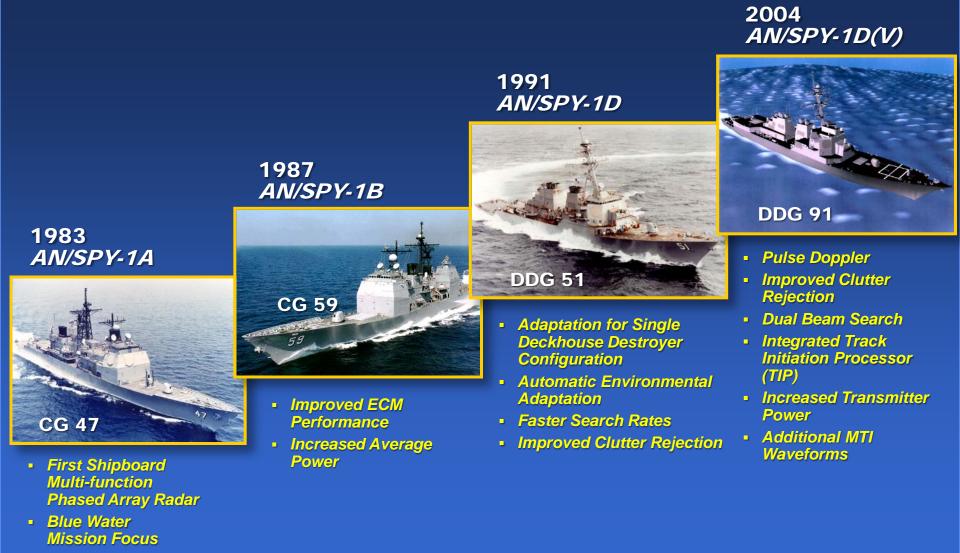
A Contested, Disordered World

Spectrum Utilization

Demand Pull

DEPARTMENT OF THE NAID Science & Technology	DARPA	THEORET RESERVENT LANDING	ÂRL
 Focus Areas: Ultra-wide-band apertures and electronics Techniques for anti- jamming/spectral efficiency Machine learning for automated response Management and control algorithms for spectral 	 Fucus Areas: Full and Dynamic control of the EM spectrum for communications, sensing and imaging Un-Banded RF Systems 	 Focus Areas: Passive and active RF and EO/IR systems Layered sensing exploitation Cognitive, distributed spectrum dominance 	Focus Areas: • Novel active and passive devices and components with improved dynamic range, linearity, bandwidth and loss performance
algorithms for spectral management across battle force, systems and components	EM Spectrum Dominance Technology Transitions: Adaptive Radar Technology	<text><text><text><image/><image/></text></text></text>	ARL Army Research Laboratory S&T Campaign Plans 2015-2035

Military Seeking Ultra-Wideband, Converged, Spectrum Reconfigurable Sensor Solutions



Historical Overview

Evolution of Military and Commercial Radar

Mechanical Scan **Electronic Scan** Beam **Mechanical** Beam Steering Steering Steering Computer Computer T/R Modules Exciter Receiver Receiver Transmitter Receiver Transmitter Control Exciter Computer Digital Digital Exciter Digital Signal Signal Signal Processor Processor Control Processor Control Computer Computer **Passive Phased Array Active Phased Array Rotating Radar System Radar System Radar System** 2020 2010 1990 2000 1980 digital active rotators passive active

Aegis SPY-1 Radar Evolution

Lockheed Martin's AESA Radar Evolution

COTS Technology

Digital Beamforming

2007

2nd Generation AESAs

Scalable System Architectures

1st Generation AESAs

COTS TechnologyAnalog Beamforming

1999

SBAR MSRD

VSR

S4R / ARTIST

• Improved Packaging Optimized for Scalability

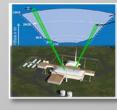
- High Levels of Integration
- Significantly Reduced Cost per Element

Today

3rd Generation AESAs

- Increased Sensitivity
- Modular/Scalable Architectures
- COTS Technology
- Digital Beamforming

Solid State SPY


MEADS

Space Fence

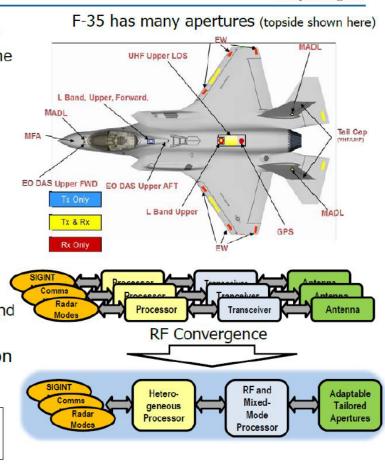
LRDR

The Case for Sensor Convergence

RF Convergence Challenge / Opportunity

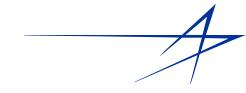
- Challenges: Apertures and systems
 - Costly to develop, expensive and time consuming to upgrade
 - Apertures expensive and difficult to integrate onto platforms
- Unsustainable against growing threats and shrinking budgets
- Opportunities

DARPA

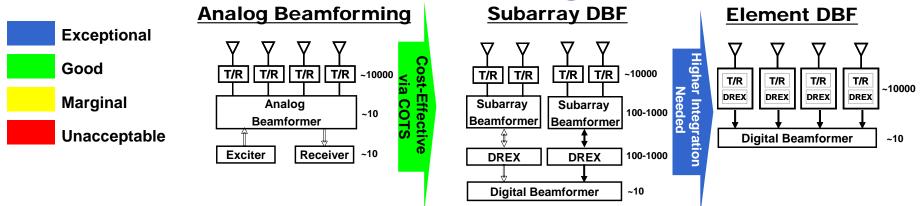

- · Powerful digital processing
- Emerging flexible wideband distribution to the aperture
- · Flexible wide-band apertures
- Low cost manufacturing assembly and integration technology
- Enables any function on any band on any aperture at any time

 DAS= Distributed Aperture System
 EO=Electro-Optical

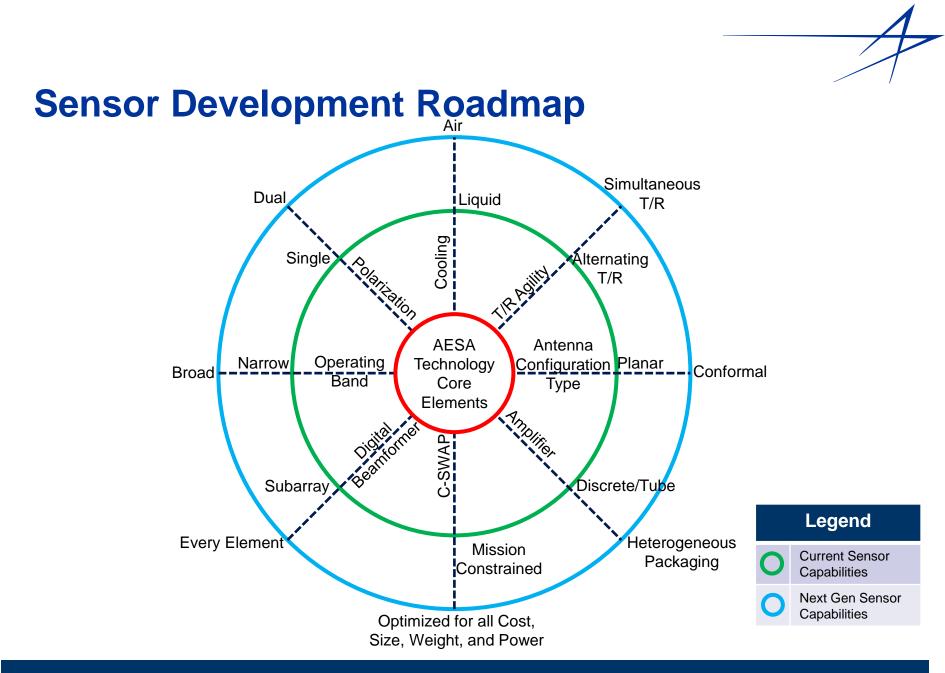
 EW = Electronic Warfare
 LOS=Line Of Sight


 MADL = Multi-function Advanced Data Link
 VHF: Very High Frequency

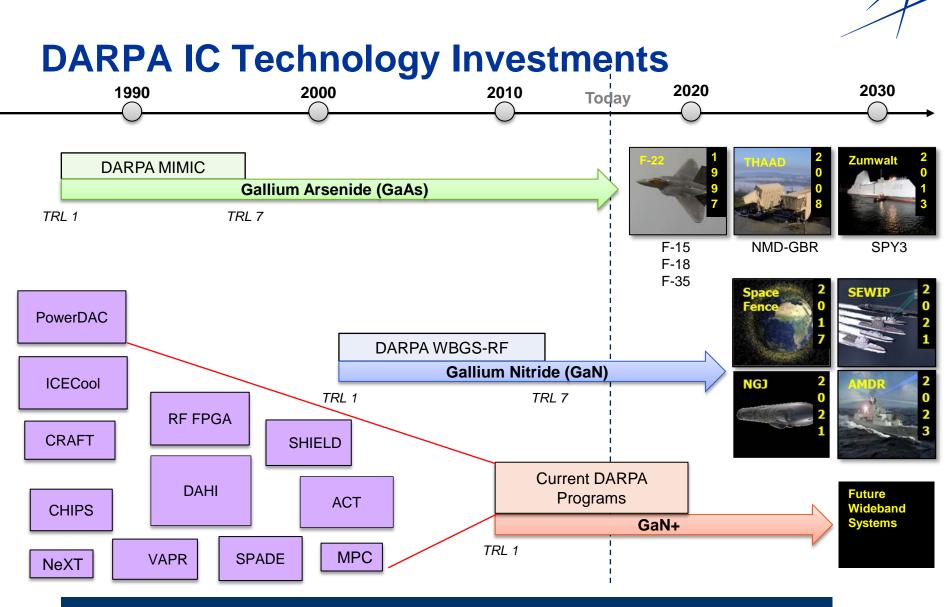
 MFA=Multi-Function Array
 UHF: Ultra High Frequency


Excerpt From: "Maritime Radar Trends & Initiatives: A Look into DARPA STO & More", September 17, 2015, Dr. Tim Grayson, Fortitude Mission Research LLC; DARPA SETA

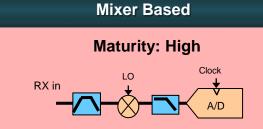
Distribution is Unlimited



Current and Future Trends


The Benefits of Element Digitization


Radar System Performance Metrics				
Frame Time				
Clutter Rejection				
Instantaneous Dynamic Range				
Adaptive EMI Rejection				
Adaptive Angle SL				
TOI Dynamic Range				
Large Array Packaging				
Packaging Density				
Digital Distribution				
RF Distribution				
Power Consumption				
Thermal Management				


Next Generation Sensor Emphasis is on Multi-Mission Capabilities, with Adaptable Electronics

DoD Technology Investments that Are Creating Enabling Technologies

Ultra-Wideband Receiver Options

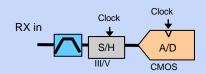
Approach

- Downconversion to IF Frequency
- A/D Sampling at IF

<u>Pros</u>

- Well Understood
- Best Dynamic Range

<u>Cons</u>


Agile LO Required

Challenges / Tradeoffs

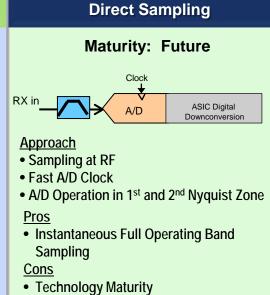
- Power
- Mixer Spurious / Filtering

Sample and Hold Based

Maturity: Emerging

Approach

- Sampling at RF
- A/D Operation in Upper Nyquist Zone
- Fold to First Nyquist


<u>Pros</u>

- Eliminates Mixer
- Easy for a COTS proof of Concept Demo Cons
- Gaps in coverage at Nyquist Edges

 Options: Tunable Clock, Dual A/D with Nyquist Unwrap
 - Dual A/D with Nyquist
- Noise Folding

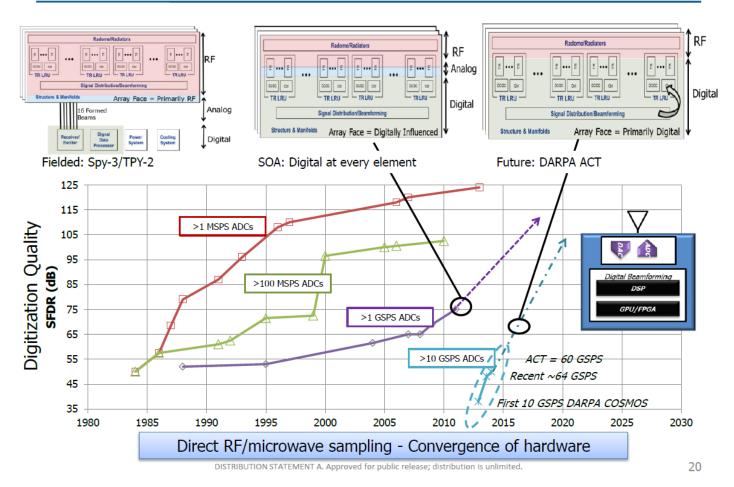
Challenges / Tradeoffs

- Power
- Noise / Filtering

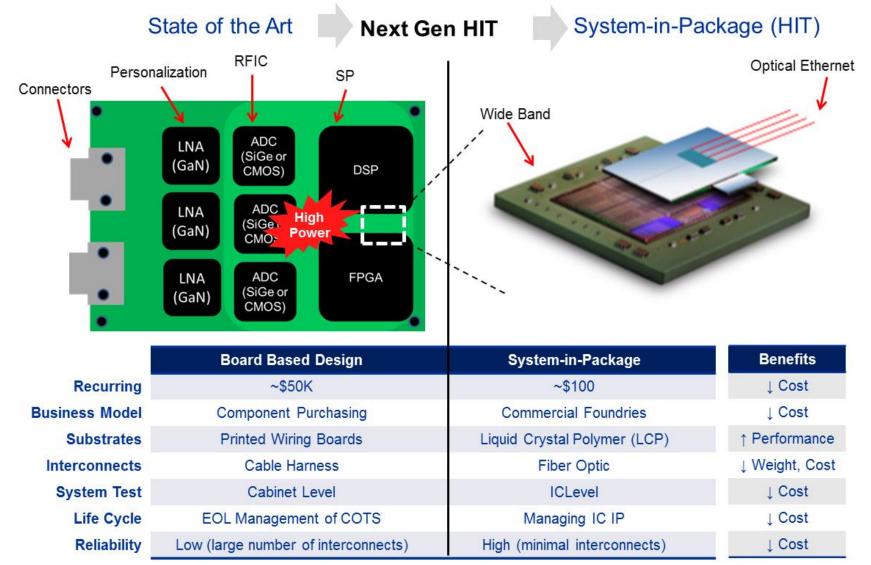
• Instantaneous BW lost at System Level with Digital Down Conversion

Challenges / Tradeoffs

- Power
- · Volume of Digital Data
- High Speed Timing


Emerging Requirements are Driving System Solutions to Direct Sampling

DARPA Focus on RF Sampling


Digital Revolution Enables RF Scalability

CURRENT EFFORT Troy Olsson

Excerpt From: "Microsystems Technology Office Exposition", February, 2016, Dr. Troy Olsson, PM DARPA MTO

Putting it all Together

18 of 33

Key Enabling Technologies

Technology

Why is this Important?

Major Suppliers / Innovators

E XILINX.

Microsemi

 Critical Enabler of Distributed Digital Beam Forming for Digital Array Radar Systems

- **Enable Radar Processing and Control** ٠
- **Meets Size Constraints of Shipboard Applications**

Embedded

Accelerators

- **High Speed Serial Communication**
- **Embedded On-array Control**

High Speed Networking

Critical Enabler of Distributed Digital Beam Forming for Digital Array Radar Systems

Embedded Processing and High Performance Computing Technology for Sensors

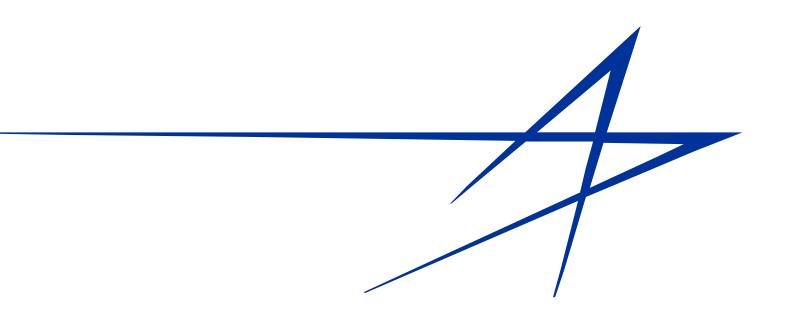
Custom/Accelerated Hardware Solutions

- Custom FPGA-based Hardware Leverages Latest Generation FPGA Technology to meet high throughput requirements of modern AESA
 - Digital Beamforming
 - Beam Steering Control
 - Digital Filtering for Bandwidth Limiting and Equalization
- COTS Embedded Accelerator Hardware Employed in Highly Parallel, High Throughput Digital Signal Processing Applications
 - GPGPUs applied to Digital Beamforming and Cancellation
 - Embedded FPGAs to perform Digital Filtering and very low latency ECM and Sensitivity Control

Custom FPGA-Based Designs

- Higher Density (50%) and Lower Power (33%) A
 - Moved from 90 nm to 28 nm Technology
 - FPGA Count Reduction (3 to 1)
- 75% Increase in High Speed SERDES Bandwidth from generation to generation

COTS Embedded Accelerators


COTS FPGA/GPP Boards

COTS Graphics Processing Unit

- Accelerators have been assimilated into Radar Signal Processing
- Cray Embedded GPU Platform
- IBM HS23 GPP/NVIDIA GPU
- Intel PHI

Summary

- Existing military primary mission sensors provide significant capability
- Evolving technologies are enabling new multimission architectures
- Future sensors will be smaller, distributed, cohered and converged

REGISTER TODAY!

FOR MORE INFORMATION: VISIT: <u>www.militaryradarsummit.com</u> Email: <u>IDGA@IDGA.ORG</u> Call:1-800-882-8684

www.militaryradarsummit.com | March 12 - 14, 2019 | Washington, D.C.